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Abstract

This paper considers the problem of locating M facilities on the unit square so as to minimize the maximal demand
faced by each facility subject to closest assignments and coverage constraints. Focusing on uniform demand over the unit
square, we develop upper and lower bounds on feasibility of the problem for a given number of facilities and coverage
radius. Based on these bounds and numerical experiments we suggest a heuristic to solve the problem. Our computational
results show that the heuristic is very efficient, as the average gap between its solutions and the lower bound is 4.34%.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Consider the problem of locating M identical facilities on a certain geographical region with spatially
distributed demand. The customers will patronize the closest facility and the capacity of each facility
must be sufficient to meet all expected demand. Assuming the capacity is costly and that all customers
must be covered, the problem of selecting the locations to minimize the total cost is equivalent to finding
locations that minimize the demand at the busiest facility. This is because the capacity of the facilities
will be determined by the busiest facility—any facility seeing less demand than the busiest one will have
some unused capacity (in fact, the ideal locations would be such that the demand at all facilities is
identical).

This paper considers the problem of locating M facilities on the unit square so as to minimize the maximal
demand faced by any facility subject to closest assignments and coverage constraints. By minimizing the
demand faced by the facilities, we are in fact reducing the difference in demand rates between the busiest
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and the least busy facilities—hence we refer to this problem as the equitable location problem (ELP). When M

is not given, we show how to find the M for which ELP is feasible.
As an example consider the problem of locating cellular phone towers in a given region. To reduce the pro-

curement and maintenance costs of these towers they are identical in capacity. We wish to cover the demand in
this region using M identical towers, each tower can cover an area of a radius r where demand is allocated to
the closest tower. Because towers’ capacity is correlated with the demand they cover, this demand dictates
their cost. Thus, to minimize costs we should minimize the maximal demand faced by a tower.

The original motivation for investigating the ELP (which is a deterministic problem) is it being a major
component in the stochastic capacity and facility location problem (SCFLP) discussed in Baron et al.
(2005) (henceforth denoted as BBK). The SCFLP focuses on three sources of uncertainty: the timing, loca-
tion, and actual amount of the demand generated by the customers. This problem optimizes three types of
decision variables: (i) the number of facilities to be located; (ii) the location of the facilities; (iii) the service
capacity of each facility. Readers interested in stochastic location problems are referred to Berman and
Krass (2002).

The approach taken in BBK to solve the SCFLP is based on the following. For a given M, the ELP is
solved to provide optimal location for the facilities and maximal demand rate to a facility, kmax. While
BBK developed efficient methods to search over M and estimate the required capacity for any space, they
solved ELP on a line. In this paper, we investigate the solution of ELP on the unit square, with a uniform
demand (with the exception of Section 3.2.1, discussing more general demand structure).

We strongly believe that ELP is an important problem in its own right. To the best of our knowledge, the
only paper that have some similarity to the ELP is Berman et al. (2005) who studied the problem of minimiz-
ing the maximum total weight faced by facilities on a network.

To capture the closest assignment constraints, we reformulate ELP using Voronoi diagrams. We then sug-
gest three methods to generate initial solutions for ELP and three procedures to improve these initial solu-
tions. Finally, based on our numerical experiments, we develop a heuristic for solving ELP. We focus on
the unit square with a uniform demand. However, in view of the vast literature on using Voronoi diagrams
(e.g., chapter 10 and 12 of Gersho and Gray (1991), Aurenhammer (1991), Suzuki and Okabe (1995), and ref-
erences therein) we believe that the approach presented should work in more general settings.

In Section 2 we present ELP faced by the decision maker over a plane and cite relevant results from BBK.
Section 3, reformulates ELP using Voronoi diagrams and discusses some feasibility issues of this problem
including finding the minimal M for which ELP is feasible. Next, Section 4 develops a few heuristics for solv-
ing ELP, tests their performances, and recommend a heuristic for solving ELP. Finally, we briefly discuss how
to extend the approach developed in this paper to different demand settings and spaces.
2. The ELP

Let P be a space P � R2 equipped with some norm k Æ k and M > 0 denote the number of facilities. Let xj be
a vector denoting the location of facility j, xj 2 P, let Ij

x ¼ 1 if the jth facility is the closest one to x and Ij
x ¼ 0

otherwise, and let RðxjÞ � maxx2Pkx; xjkIj
x be the maximum travel distance of customers’ assigned to facility j.

Assume that at each x 2 P customers’ demand rate is k(x) such that
R

x2P kðxÞdx ¼ K <1, thus
kxj ¼

R
x2P I j

xkðxÞdx is the arrival rate to the jth facility. Let r be an exogenously given distance, which is the
maximum distance allowed from a customer to a facility, and let e be the smallest distance allowed between
distinct facilities.

Consider the following optimization problem called the ‘‘equitable location problem’’ (ELP(M)):
min kmax ð1Þ
S:t: kxi; xjkP e 8i; j ¼ 1; . . . ;M ; i 6¼ j;

kmax P kxj 8j ¼ 1; . . . ;M ;

RðxjÞ 6 r 8j ¼ 1; . . . ;M ;

xj 2 P 8j ¼ 1; . . . ;M ;
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where kxj is the demand rate to the jth facility. As mentioned earlier, the objective of ELP(M) is to locate M

distinct (first set of constraints) facilities such that the coverage (third set of constraints) and closest assign-
ment constraints are satisfied and the demand faced by the ‘‘busiest’’ facility is as small as possible. (In the
second set of constraints, when we calculate kxj we make sure that closest assignments are maintained.)

The following definition was introduced in BBK:

Definition 1 (Equitable Facility Configuration). We say that a location vector x represents an Equitable
Facility Configuration (EFC) if the demand rates to all facilities are the same, i.e., if kmax = K/M, where K is
the total demand rate.
It is clear that if a feasible EFC location vector exists in the ELP(M) model, then this location vector is
optimal. In this paper, we focus on solving the ELP(M) problem where P is the unit square with uniform
demand and the L2 distance norm, defined by:
kxi; xjk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kxi � xjk2 þ kyi � yjk

2
q

:

3. Reformulating the ELP(M) problem

Here we formulate ELP and discuss its feasibility.

3.1. Formulation using Voronoi diagram

Given M facilities, the closest assignment constraints with a given distance norm, divides the plane to M

areas using a Voronoi diagram of this distance norm. A comprehensive survey on Voronoi diagrams is given
in Aurenhammer (1991) and Okabe et al. (2000), where a wide range of applications of Voronoi diagrams are
discussed, a survey on the application of Voronoi diagrams in facility location problems is given in Suzuki and
Okabe (1995).

We denote by Vi the Voronoi region associated with the ith facility. Then, the demand rate to this facil-
ity is:
kxi ¼
1

K

Z
x2V i

dxdy 8i ¼ 1; . . . ;M :
Assuming that the Voronoi diagram is given, we rewrite ELP(M) in a more convenient form:
min kmax ð2Þ

S:t: kxi 6 kmax 8i ¼ 1; . . . ;M ;

kxi; xjkP e 8i; j ¼ 1; . . . ;M ; i 6¼ j;

kxi; xk 6 r 8i ¼ 1; . . . ;M ; x 2 V i:
We found this version of the ELP(M) problem more tractable than the original one, thus the rest of the paper
is focused on solving it.
3.2. Feasibility issues

When the value of M and r are small, ELP(M) may be infeasible and therefore no feasible EFC exists. In
this section, we first give sufficient conditions for the existence of EFC, given the closest assignment constraints
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but ignoring the coverage constraints. We then present a lower bound on the number of facilities required to
satisfy the coverage constraints.
3.2.1. No coverage constraints (r P
ffiffiffi
2
p

) – existence of EFC
When r P

ffiffiffi
2
p

, all points on the unit square are covered from each facility within the square, thus the
coverage constraint can be ignored. In such cases, when demand is uniform over P, an EFC can always be
found by locating the M facilities evenly on the line of (0,0.50) to (1, 0.5) (or (0.5,0) to (0.5,1)). Furthermore,
for a general demand process k(x,y) we show that if k(x,y) increases with x or y, decreases with x or y, or is
bell-shaped with center at point (0.5,0.5) then an EFC exists for any given number M. These conclusions fol-
low the next result from BBK for the case that the space considered is a line segment. Define k(x) as the
demand rate at x 2 [0, 1], then K ¼

R 1

0
kðxÞdx and:

Proposition 1. Suppose k(x) is non-increasing or non-decreasing on [0,1] or non-decreasing on [0, z] and non-

increasing on [z,1] for some z 2 [0,1], then an EFC exists.

When k(x,y) satisfies one of the conditions above, we can aggregate the demand from each point on the
square to the closest point on the line (0, 0.50) to (1, 0.5) (or (0.5,0) to (0.5,1)). This demand aggregation trans-
forms the ELP on a plane into an ELP on a line with k(x) satisfying the condition in Proposition 1. Thus, an
EFC exists.

3.2.2. Active coverage constraints (r <
ffiffiffi
2
p

) – feasibility of ELP(M)

It is easy to see that if ELP(M0) is feasible, then ELP(M) is feasible for any M > M0. Yet, if an EFC exists
for M0, we have no guarantee that an EFC exists for each M > M0. Ensuring that the coverage constraints
hold for every point on P is equivalent to covering P by M identical circles with radius r. Thus, because P

is a unit square, M must satisfy
Mpr2 P 1) M lb ¼
1

pr2

� �
;

where Mlb is the lower bound on M. This lower bound can be improved by the ‘‘honeycomb conjecture’’,
proved in Hales (2001). This result states that ‘‘any partition of the plane into regions of equal area has perim-
eter at least that of the regular hexagonal honeycomb tiling’’. Thus, dividing the plane into regions with a
maximal radius r can be done with hexagons. The area of a hexagon is 3

ffiffiffi
3
p

r2=2, therefore, Mlb can be
improved to:
M lb3
ffiffiffi
3
p

r2=2 P 1) M lb ¼
2

3
ffiffiffi
3
p

r2

� �
:

In practice we find the minimal M for a given r by solving a sequence of p-center problem (see Suzuki and
Drezner (1996)). Initially, let p = Mlb, solve the corresponding p-center problem, if the resulting maximum ra-
dius is less than or equal to r, stop, ELP(M) is feasible for any M P p; otherwise, increase the value of p by 1
and continue the procedure until the resulting maximum radius is less than or equal to r. A more effective
search would be a bisection search that also requires an upper bound on M. We discuss such bounds in
the next subsection.
3.3. Upper bounds

Here we develop upper bounds on the value of M, (these bounds can also be used to develop an upper
bound on kmax and consequently on the cost of the SCFLP problem analyzed in Baron et al. (2005)). The first
upper bound on M locates M1 facilities similarly to the approach used in Suzuki and Drezner (1996) to solve
the M-center problem. The second one is to locate M2 facilities where an EFC is easy to reach for M2.
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3.3.1. Upper bound 1

The first upper bound is calculated by dividing region P into rectangles so that each rectangle can be cov-
ered by a circle of radius r as shown in Fig. 1.

Let h1 ¼ d 1ffiffi
2
p

r
e, a1 ¼ 1

2h1
, b1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � a2

1

p
, n1 ¼ b 1

2b1
c, b2 ¼ 1�2n1b1

2
, a02 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � b2

2

q
, h2 ¼ d 1

2a0
2
e, a2 ¼ 1

2h2
. Then rect-

angle A is a 2a1 by 2b1 rectangle and rectangle B is a 2a2 by 2b2 rectangle. For example, if r = 0.27, h1 = 3,

a1 = 1/6, b1 = 0.2124, n1 = 2, b2 = 0.0752, a02 ¼ 0:2593, h2 = 2 and a2 = 0.25.
Given r, a feasible solution for ELP can be obtained by locating
M1 ¼ n1h1 þ h2;
(i.e., n1h1 A rectangles and h2 B rectangles) facilities at the center of the M1 rectangles. The coordinates of the
facilities are
xi ¼
ð2modði� 1; h1Þ þ 1Þa1 if i 6 n1h1

ð2ði� n1h1Þ � 1Þa2 otherwise

(

yi ¼
ð2bði� 1Þ=h1c þ 1Þb1 if i 6 n1h1

2n1b1 þ b2 otherwise:

(

Note that each facility may not exactly cover the customers in their corresponding rectangle due to the closest
assignment constraints. However, the customer can always find a facility within r units of distance.

Draw the Voronoi diagram for the M1 facilities. For facility i, the demand rate ki can be obtained by cal-
culating the area Pi of each Voronoi region and kmax = max{ki: i = 1, . . .,M1}.
3.3.2. Upper bound 2

The second upper bound is calculated by dividing region P into squares so that each square can be covered
by a circle of radius r.

Let n0 ¼ d1=ð
ffiffiffi
2
p

rÞe and M2 ¼ n2
0. If we divide P into n0 by n0 squares, then each square has a side of a =

1/n0. If we locate a facility at the center of each square, then the customers in each square are served by the
corresponding facility and an EFC is reached with kmax(M) = a2 = 1/M2.
Fig. 1. Divide P into rectangles: r = 0.27.
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4. Heuristics for the ELP(M) problem

In this section, we develop a heuristic to find an approximation of kmax(M). We present three sets of initial
locations for the M facilities and three heuristics to improve facilities’ locations. Based on our numerical
experiments we then suggest a heuristic to solve the ELP(M) problem.

4.1. Initial facility locations

We consider three methods to generate an initial set of facility locations. The first is to randomly generate
M points in the unit square. The second is to use the algorithm developed by Suzuki and Drezner (1996) to
solve the M-center problem on a square. We call the third the Rectangle Center and present it below.

For any given M, let n ¼ d
ffiffiffiffiffi
M
p
e. We divide P into M subregions as follows:

• If M = n2, then we divide P into M squares, each with a size of 1/n by 1/n.
• If M = n(n � 1), then we divide P into M rectangles, each with a size of 1/n by 1/(n � 1).
• If (n � 1)2 < M < n(n � 1), then we divide P into (n � 1) strips. Among the (n � 1) strips, the first

n1 = n (n � 1) �M strips have n � 1 rectangles with a size of a1 = 1/(n � 1) by b1 = (n � 1)/M, the other
n2 = n � 1 � n1 strips have n rectangles with a size of a2 = 1/n by b2 = n/M.

• If n(n � 1) < M < n2, then we divide P into n strips. Among the n strips, the first n1 = n2 �M strips have
n � 1 rectangles with a size of a1 = 1/(n � 1) by b1 = (n � 1)/M, the other n2 = n � n1 strips have n rectan-
gles with a size of a2 = 1/n by b2 = n/M.

For example, when M = 10, n = 4 and (n � 1)2 < M < n(n � 1). P can be divided into n � 1 = 3 strips.
n1 = n (n � 1) �M = 2 strips have n � 1 = 3 rectangles with a size of a1 = 1/(n � 1) = 1/3 by b1 = (n � 1)/M =
3/10, the other n2 = n � 1 � n1 = 1 strips have n = 4 rectangles with a size of a2 = 1/4 by b2 = n/M = 4/10.
The 10 rectangles are illustrated in Fig. 2. The size of rectangle A is 1/3 by 3/10 and the size of rectangle B is
1/4 by 4/10.

When M = 15, n = 4 and n(n � 1) < M < n2. P can be divided into n = 4 strips. n1 = n2 �M = 1 strips have
n � 1 = 3 rectangles with a size of a1 = 1/(n � 1) = 1/3 by b1 = (n � 1)/M = 1/5, the other n2 = n � n1 = 3
strips have n = 4 rectangles with a size of a2 = 1/4 by b2 = n/M = 4/15. The 15 rectangles are illustrated in
Fig. 3. The size of rectangle A is 1/3 by 1/5 and the size of rectangle B is 1/4 by 4/15.

If we locate a facility at the center of each rectangle, the coordinates of the facilities are:
xi ¼
ðmodði� 1; n� 1Þ þ 0:5Þa1 if i 6 n1ðn� 1Þ
ðmodði� n1ðn� 1Þ � 1; nÞ þ 0:5Þa2 otherwise

�

yi ¼
ðbði� 1Þ=ðn� 1Þc þ 0:5Þb1 if i 6 n1ðn� 1Þ
ðn1b1 þ bði� n1ðn� 1Þ � 1Þ=nc þ 0:5Þb2 otherwise:

�

Fig. 2. Divide P into 10 subregions with equal area.



Fig. 3. Divide P into 15 subregions with equal area.
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Observe that for a given r and M, the Rectangle Center method described above may fail to find a feasible
solution, i.e., some of the points in P may not be covered by any facility due to the coverage constraints.
We have

Proposition 2. For any m P 3, r ¼
ffiffiffi
2
p

=ð2mÞ, M = m2 + 1, the highest row of rectangles cannot be covered by the
facility located at its center.
Proof. In this case, n = m + 1, a2 = 1/n, b2 = n/M.
a2
2þ b2

2� 4r2 ¼ 1

ðmþ 1Þ2
þðmþ 1Þ2

M2
� 2

m2
¼ 1

ðmþ 1Þ2
þ ðmþ 1Þ2

ðm2þ 1Þ2
� 2

m2
¼ 2m4þ 4m3� 4m2� 4m� 2

m2ðmþ 1Þ2ðm2þ 1Þ2
> 0: �
However, if we move the facilities in these rectangle a little higher, the upper uncovered point may be cov-
ered by the new location and the lower uncovered point may be covered by the facilities located at the center of
the rectangles on the (m � 1)th strip which have a smaller height.

We can also prove the following proposition.

Proposition 3. A feasible solution always exists when m ¼ d1=ð
ffiffiffi
2
p

rÞe, M > m2 + 1.
Proof. Since m ¼ d1=ð
ffiffiffi
2
p

rÞe, 4r2 P 2/m2.
n ¼ d

ffiffiffiffiffi
M
p
eP mþ 1, a1 = 1/(n � 1) 6 1/m, b1 = (n � 1)/M < 1/(n � 1) 6 1/m, a2 = 1/n < 1/m, b2 = n/M.

We have
a2
1 þ b2

1 � 4r2 < 1=m2 þ 1=m2 � 2=m2 ¼ 0:
When n = m + 1, i.e., m2 + 1 < M < (m + 1)2 let M = m2 + a, we have
a2
2 þ b2

2 � 4r2
6

1

ðmþ 1Þ2
þ ðmþ 1Þ2

M2
� 2

m2
¼ 1

ðmþ 1Þ2
þ ðmþ 1Þ2

ðm2 þ aÞ2
� 2

m2

¼ �ð2a� 4Þm4 þ ð8a� 4Þm3 þ ða2 þ 4a� 1Þm2 þ 4a2mþ 2a2

m2ðmþ 1Þ2ðm2 þ aÞ2
:

Since a > 1, a2
2 þ b2

2 � 4r2 < 0.
When n > m + 1, M > (n � 1)2 > mn, a2 = 1/n < 1/m, b2 = n/M < 1/m:
a2
2 þ b2

2 � 4r2 < 1=m2 þ 1=m2 � 2=m2 ¼ 0: �
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4.2. Procedures to find the maximal arrival rate (given M)

When the locations of the M facilities are given, the demand rate for each facility can be calculated by find-
ing the Voronoi diagram and calculating the area Pi of each Voronoi region and kmax(M) is the maximal area.
Initial solutions can be based on either one of the methods discussed in 4.1. Here, we present three procedures
to improve the locations given by an initial solution.
4.2.1. Procedure 1 for ELP(M)

This procedure starts with the set of initial solutions generated by the rectangle center method described
above. Let n ¼ d

ffiffiffiffiffi
M
p
e, there are either (n � 1) or n rows of facilities. In either case, the lower rows have

(n � 1) facilities and the upper rows have n facilities. Let row i (counted from the bottom) be the highest
row that has (n � 1) facilities, i.e., row (i + 1) has n facilities. For example, when M = 10, i = 2 and when
M = 15, i = 1.

It is easy to see that when the facilities are located at this initial set, the facilities on row i will have a demand
rate greater than 1/M. If we move the n facilities on row (i + 1) slightly towards these (n � 1) facilities (i.e., a
little lower in the square), the value of kmax(M) will decrease. We continue this procedure until there is no
improvement.
4.2.2. Procedure 2 for ELP(M)

This procedure is based on local adjustments. It starts with any set of initial solutions described in Section
4.1. Then it finds the one with the largest (smallest) demand rate. Move the facilities around the neighborhood
to decrease (increase) the largest (smallest) demand rate.

Let � be a given small positive number, Pi be the Voronoi region of facility i, ki be the demand rate of facil-
ity i, imin = argmin{ki: i = 1, . . .,M}, imax = argmax{ki: i = 1, . . .,M}, kmin ¼ kimin

, kmax ¼ kimax , and Ni = {j: Pj

shares at least an edge with Pi}. We assume for the time being that kimin
and kimax are unique.

Step 1. (Initialization) For a given M, find the initial facility location by one of the methods listed in 4.1.
Denote kmax(M) =1. Make obvious improvements.

Step 2. Find the Voronoi regions for the facilities and their demand rates ki. Find imin, imax, kmin and kmax.
If kmax < kmax(M), update kmax(M) = kmax.
If (kmax � kmin) < � or the change of (kmax � kmin) is negligible, stop; otherwise, go to Step 3.

Step 3. (Relocation) Find a facility to relocate so that either kmax will decrease or kmin will be increased.
3.1. If kmax � 1/M > 1/M � kmin, consider facility imax and its neighborhood Nimax . Let j be the facility

with the smallest demand rate in Nimax . If imax is unique, move j toward imax, this may reduce the
demand rate for imax and increase the demand rate for j. Go to Step 2.

3.2. Else, consider facility imin and its neighborhood Nimin
. Let j be the facility with the largest demand

rate in Nimin
. Move imin toward j, this may increase the demand rate for imin and decrease the

demand rate for j. Go to Step 2.
4.2.3. Procedure 3 for ELP(M)
This procedure is based on global adjustments. It starts with any set of initial solutions described in Section

4.1. Then it finds the facilities with the largest and smallest demand rate. It moves a facility with the largest
demand rate toward one with the smallest demand rate to decrease the gap.

Step 1. (Initialization) For a given M, find the initial facility location by one of the methods listed in 4.1.
Denote kmax(M) =1.

Step 2. Same as Step 2 in Procedure 2.
Step 3. (Relocation) Move imin toward imax, this may reduce the demand rate for imax and increase the demand

rate for imin. Go to Step 2.



Table 1
Movement of facilities

Iter 1 2 3 4 5 6 kmax kmin

1 (0.1,0.4) (0.2,0.9) (0.3,0.6) (0.3,0.7) (0.1,0.5) (0.2,0.6) 0.38625 0.03125
2 (0.25,0.167) (0.25,0.833) (0.75,0.167) (0.75,0.833) (0.1,0.5) (0.2,0.6) 0.247165 0.0675
3 (0.25,0.167) (0.25,0.833) (0.75,0.167) (0.75,0.833) (0.1,0.5) (0.45,0.4) 0.225076 0.103445
4 (0.25,0.167) (0.25,0.833) (0.75,0.167) (0.75,0.833) (0.1,0.5) (0.5,0.5) 0.2045 0.10725
5 (0.25,0.167) (0.25,0.833) (0.75,0.167) (0.75,0.833) (0.3,0.5) (0.5,0.5) 0.2045 0.1355
6 (0.25,0.167) (0.25,0.833) (0.75,0.167) (0.75,0.833) (0.3,0.5) (0.7,0.5) 0.16875 0.1625
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4.2.4. Discussion and an example

Procedures 2 and 3 are more difficult to implement than Procedure 1 since controlling facilities’ movement
requires more judgment in choosing the direction and the distance of shift. Moreover, when there are coverage
constraints, the step size of the movement must keep the feasibility of the solution. This can be done by reduc-
ing the step size once the last step size leads to an infeasible solution. In the examples to follow, we discuss our
choices for the direction and step sizes.

We presented the procedures above assuming that the facilities recognized in the search steps are uniquely
determined. In the case when these facilities are not unique the movement should be directed towards (or
from) the average location of these multiple facilities. Step 4 in the following example demonstrate such a case
and its solution.

Example 1. Consider the case when M = 6, r = 1, and � = 0.01. The Voronoi diagrams associated with
location of facilities in the following steps is given in Appendix A, the locations, kmax and kmin are given in
Table 1.

1. Initially, the facilities are located at points (0.1,0.4), (0.2,0.9), (0.3,0.6), (0.3,0.7), (0.1,0.5), and
(0.2,0.6) (Diagram 1). Facility 3 has the maximum demand rate of 0.38625 and facility 5 has the min-
imum demand rate of 0.03125. As obvious improvements, we observe that facilities 1, 2, 3 and 4
cover the 4 corners of the unit square, thus we move them closer to the corners (Diagram 2). After
this, Facility 3 still has the maximum demand rate of 0.247165 and facility 5 has the minimum
demand rate of 0.0675.

2. In Diagram 2, facility 6 has the smallest demand rate in the neighborhood of facility 3. After moving facility
6 toward facility 3 (see Diagram 3), facility 2 has the maximum demand rate of 0.225076 and facility 5 has
the minimum demand rate of 0.103445.

3. In Diagram 3, facility 6 has the smallest demand rate in the neighborhood of facility 2. After moving facility
6 toward facility 2 (see Diagram 4), facilities 2 and 3 have the maximum demand rate of 0.2045 and facility
5 has the minimum demand rate of 0.10725.

4. Since 0.2045 is close to 1/6 (the EFC demand rate), we consider the facility with the minimum demand rate
– facility 5. Since the facilities with the maximum demand rate are all located on the right side of facility 5,
we move facility 5 to the right (see Diagram 5). After this, facilities 2 and 3 have the maximum demand rate
of 0.2045 and facility 6 has the minimum demand rate of 0.1355.

5. Since the facilities with the maximum demand rate are all located on the right side of facility 6, we move
facility 6 to the right. After this, facilities 1, 2, 3 and 4 have the maximum demand rate of 0.16875 and facil-
ities 5 and 6 have the minimum demand rate of 0.1625. Since 0.16875 � 0.1625 6 �, Stop.
4.3. Performance of the three procedures

In this section, we test the performance of the procedures started with different initial solution sets, assum-
ing that the coverage constraints are inactive. First, we briefly describe how we make the location adjustment
in our computational experiments.



Table 2
Quality of procedures for ELP(M) (in percentage)

Ideal Percent gap from ideal

M EFC H(0,2) H(0,3) H(1,3) H(2,1) H(2,2) H(2,3) H(3,1) H(3,2) H(3,3)

3 0.33333 12.500 6.250 0.001 7.169 13.261 0.001 10.901 6.148 2.353
5 0.20000 13.596 9.606 1.111 44.114 13.596 9.606 44.179 4.101 9.606
7 0.14286 7.713 6.828 2.061 65.375 7.713 6.828 36.182 7.713 6.828
8 0.12500 2.381 5.093 1.974 58.156 2.347 5.093 61.003 2.381 5.093

10 0.10000 14.013 6.680 0.666 80.821 10.378 6.680 183.810 13.893 6.680
11 0.09091 7.324 6.333 2.726 80.263 7.324 6.333 93.635 7.324 6.333
13 0.07692 14.520 5.539 1.088 34.575 10.136 5.539 74.521 14.520 5.539
14 0.07143 5.149 5.093 2.176 127.377 4.956 5.093 253.543 5.149 5.093
15 0.06667 2.744 4.613 1.817 122.374 2.744 4.613 146.665 2.744 4.613
17 0.05882 9.760 5.146 0.687 79.923 9.756 4.742 159.352 9.760 5.146
18 0.05556 5.916 5.013 2.259 122.392 5.916 4.558 155.382 5.916 5.013
19 0.05263 5.424 4.871 2.194 163.044 4.723 4.491 128.253 5.424 4.871
21 0.04762 11.382 4.566 1.040 54.967 11.246 4.384 122.755 11.382 4.566
22 0.04545 4.842 4.401 1.974 139.070 4.842 4.401 78.656 4.842 4.401
23 0.04348 4.521 4.230 1.892 86.777 4.521 4.230 86.590 4.521 4.230
24 0.04167 3.013 4.050 1.807 116.881 3.013 4.050 202.633 3.013 4.050
26 0.03846 9.589 4.203 0.580 97.606 8.755 4.203 80.699 9.589 4.203
27 0.03704 5.134 4.141 1.894 79.525 5.019 4.077 293.277 5.134 4.141
28 0.03571 5.029 4.076 1.862 99.648 4.912 3.823 135.789 5.029 4.076
29 0.03448 4.363 4.009 1.830 152.377 4.067 3.797 99.716 4.363 4.009
31 0.03226 11.503 3.867 0.815 62.249 10.608 3.732 77.881 11.503 3.867
32 0.03125 4.540 3.793 1.726 92.465 4.419 3.721 112.104 4.540 3.793
33 0.03030 4.398 3.717 1.689 168.771 4.279 3.679 254.258 4.398 3.717
34 0.02941 4.248 3.638 1.651 99.419 4.132 3.638 78.828 4.248 3.638
35 0.02857 2.900 3.556 1.612 86.085 2.900 3.556 241.966 2.900 3.556
37 0.02703 9.079 3.563 0.559 131.707 8.905 3.348 95.728 9.079 3.563
38 0.02632 4.562 3.529 1.625 208.641 4.562 3.339 83.866 4.562 3.529
39 0.02564 4.512 3.495 1.609 171.154 4.512 3.333 124.328 4.512 3.495
40 0.02500 4.460 3.461 1.592 69.468 4.460 3.312 158.228 4.460 3.461
41 0.02439 3.671 3.425 1.574 99.198 3.395 3.293 98.970 3.671 3.425
43 0.02326 10.923 3.351 0.750 126.991 10.738 3.278 186.284 10.923 3.351
44 0.02273 4.217 3.312 1.520 110.338 4.217 3.262 281.353 4.217 3.312
45 0.02222 4.148 3.273 1.501 156.164 4.148 3.247 133.967 4.148 3.273
46 0.02174 4.075 3.233 1.482 89.606 4.075 3.233 122.767 4.075 3.233
47 0.02128 3.999 3.192 1.462 99.771 3.999 3.192 92.319 3.999 3.192
48 0.02083 2.698 3.150 1.442 117.344 2.698 3.150 173.712 2.698 3.150
Average gap 6.468 4.453 1.507 102.828 6.146 4.190 132.336 6.024 4.344
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For Procedure 1, let kmax be the maximal demand rate for the set of locations. First calculate
d = kmax(M) � 1/M. If d < 1e�5, stop. Otherwise, find the row with maximum demand rate, and then move
the facilities above the row toward it by a distance of d/2.

For Procedure 2, in Step 3.1, we move facility j (the one with the smallest demand rate in the neighborhood)
toward facility imax by a distance of d(imax, j)(kmax � kj)/2; in Step 3.2, we move facility imin toward facility j

(the one with the largest demand rate in the neighborhood) by a distance of d(imin, j)(kj � kmin)/2.
For Procedure 3, in Step 3, we move facility imin toward facility imax by a distance of d(imax, imin)(kmax � kmin)/2.
Table 2 shows the gap between the solutions of the procedures and EFC (i.e., 1/M). In the table, column

‘‘EFC’’ is the ideal demand rate if an EFC is found, which is equal to 1/M, column ‘‘H(i, j)’’ is the relative gap
(in percentage) between the kmax(M) found by Procedure i started with initial solution set j and EFC, which is
equal to (kmax(M) � EFC)/EFC. Thus, j = 1 is an initial solution starting with a random facility location, j = 2
is an initial solution based on the solution of the M-center problem, and j = 3 is based on the rectangle center;
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and i = 0 stands for the initial solution sets without any adjustment, i = 1 stands for the solution using pro-
cedure 1 (and therefore is applied only to an initial solution based on the rectangle center), and i = 2 and i = 3
stand for the solution using Procedures 2 and 3, respectively.

Observe that Table 2 does not include cases where M = n2 and M = n(n + 1) because under these case, we
can divide the square to M identical rectangles (leading to an EFC). If the coverage threshold r is large, an
EFC exists for most such M values. For example, for M = 9, 12, and 25 we can divide the unit square into
3 * 3, 3 * 4, and 5 * 5 identical regions respectively.

In this computational experiments, we ignored the coverage constraints. From the table, we can conclude
that when the coverage constraints are not very restrictive (our heuristic in next section is based on these
conclusions):

• Initial solution set 3, based on the rectangular heuristic, was better than set 2 (using the M � center) that
was better then set 1 (random location).

• Procedure 1 was better than Procedures 2 and 3. The performance of procedure 1 was very good. Proce-
dures 2 and 3 did not improve the solution much.

4.4. Heuristic for ELP(M)

Based on the performance of the procedures, we present the following heuristic to generate an approximate
solution for ELP(M) (for feasible M ).

Step 1. If M can be represented by the product of two integer numbers, let m1, m2 be the pair that has
the smallest difference among all the possible combinations, i.e., jm1 � m2j ¼ minfjmi

1 � mi
2j :

M ¼ mi
1mi

2g. If (1/m1)2 + (1/m2)2
6 4r2, then divide P into m1 by m2 rectangles and locate the M facil-

ities at the center of the rectangles. An EFC is reached and kmax(M) = 1/M, stop.
Step 2. Use the rectangle center method from Section 4.1 to divide P into M rectangles. Locate the facilities at

the center of the rectangles. Use Procedure 1 to fine tune the position of the facilities. Check the fea-
sibility (for coverage constraints). If it is feasible, the maximum area is an approximation for kmax(M),
stop.

Step 3. Find the solution for M-center location problem. Execute Procedure 2 or 3 to adjust the locations. The
maximum area is an approximation for kmax(M).

5. Summary and future work

In this paper, we consider ELP of minimizing the maximal demand rate to a facility, on a plane. Three
sets of initial solutions and three procedures to improve these solutions are developed, and a heuristic
approach is suggested. Our work focused on the unit plane with uniform demand and indeed many of
our results are confined to these settings. However, in view of the available literature on using Voronoi dia-
grams (e.g., chapter 10 and 12 of Gersho and Gray (1991), Aurenhammer (1991), Suzuki and Okabe (1995),
and references therein) we believe that the approach presented, namely formulating ELP using a Voronoi
diagram and improving the location of facilities starting from a ‘‘good’’ initial location of facilities, should
work in more general settings.

Moreover, as mentioned before, the algorithm of BBK for solving the SCFLP problem depends on the
topology of the space only by the solution of ELP. (The other components of their algorithm are completely
general.) Therefore, using the results in this paper the SCFLP problem on the unit square with uniform
demand can be solved.
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Appendix A. Voronoi diagrams for Example 1
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